RESEARCH REPORTS

AEC

Y 3. At7

221 PNE-229F

UNIVERSITY OF ARIZONA LIBRARY **Documents** Collection JAN 20 1964 FINAL REPORT

PNE-229F

Plowsbare / peaceful uses for nuclear explosives

UNITED STATES ATOMIC ENERGY COMMISSION / PLOWSHARE PROGRAM

Some Radiochemical and Physical Measurements of Debris from an Underground Nuclear Detonation

W. B. Lane

U. S. NAVAL RADIOLOGICAL DEFENSE LABORATORY

ISSUED: JANUARY 7, 1964

PROJECT SEDAN

PNE 229F

SOME RADIOCHEMICAL AND PHYSICAL MEASUREMENTS OF DEBRIS FROM AN UNDERGROUND NUCLEAR DETONATION

W. B. Lane, Project Officer

U. S. Naval Radiological Defense Laboratory Civil Effects Test Group San Francisco, California

June 1963

ABSTRACT

Fallout samples were collected from 2600 feet to 19,000 feet from ground zero in order to determine the mass per unit area, gamma activity per unit area, particle size distribution and specific activity versus particle size of the fallout; to determine the gamma decay rate and spectra of the samples; to perform leaching and exchange studies on the radioactive debris; to measure the release of gaseous fission product iodine; and to determine the radiochemical composition of the fallout particulate.

Twenty collectors (2 ft x 2 ft x 2 in. deep) were placed in the downwind sector at increasing distances. An iodine gas sampler was located approximately two miles downwind.

The fallout was well-distributed over the station array, and all collectors received significant deposits.

Analysis of the debris was performed at the Nevada Test Site.

Airborne iodine fission products were found in the contaminated field downwind from ground zero, and iodine fission products were found to volatilize or be otherwise released from particulate fallout.

Gamma decay measurements showed no evidence of radionuclide fractionation in debris from different locations, nor among different particle size fractions. Pulse height distributions also indicated no significant fractionation of gamma emitting radionuclides.

A $4-\pi$ ionization chamber decay rate measurement showed excellent agreement with a computed decay rate.

Measurements of mass and activity distributions indicate that the radionuclides are associated with the volume of the particle rather than with its surface area.

Radiochemical data are presented but extensive analysis was not attempted.

Sufficient data were obtained to meet all project objectives.

Digitized by Google

PREFACE

The author wishes to acknowledge the contribution made by Dr. Carl F. Miller, Assistant Director of Postattack Research, Office of Civil Defense, Department of Defense, in the initiation of the project, the design of the iodine experiment, and the execution of the field phase. Thanks are due to P. D. LaRiviere, Project Leader of Project 2.9 and 2.11 Small Boy, for making available the U. S. Naval Radiological Defense Laboratory (NRDL) analytical facilities at the Nevada Test Site, and for devising the iodine data treatment.

Credit for the radiochemistry must go to members of Project 2.10 Small Boy. Dr. E. C. Freiling, Project Leader, F. K. Kawahara, Assistant Project Leader, and L. R. Bunney, Deputy Project Leader of USNRDL distributed the samples, specified the radionuclides to be determined, and converted the raw data to comparable units (fissions).

Station No.	Distance From GZ	Bearing	Road
	ft	degrees	
1	2,700	n 45 ⁰ w	A
2	2,500	N 22.5 ⁰ W	A
3	2,560	0 °	A
4	2,800	N 22.5 ⁰ E	Α
5	3,300	n 45 ⁰ е	Α
6	5,200	n 45 ⁰ w	В
7	5,000	N 22.5°W	В
8	5,100	0 ⁰	В
9	5,400	N 22.5 ⁰ E	В
10	5,800	N 35.5 ⁰ E	В
11	9,300	N 9°W	C
12	11,900	N 1.7 ⁰ E	G
13	14,200	N 13.5 ⁰ E	G-J
14	19,200	n 5 ⁰ e	D-J
15	17,000	N 7.5°W	D
16	16,100	N 22.5°W	D
17	16,500	N 13.5°W	-
18	10,000	N 15 ⁰ E	F
19	9,800	N 30 ⁰ E	F
20	9,600	n 45 ⁰ e	F

TABLE 2.1 STATION LOCATION

Figure 2.1 Sedan site showing sample stations.

detonation. The method is described in Reference 7.

Inspection of Table 3.10 indicates little difference in the results for equivalent fissions between Mo^{99} and Zr^{95} . The capture to fission ratio for W^{185} was higher for particles in the pan fraction than for large particles.

Certain discrepancies in the data are apparent such as the $\mathrm{Sr}^{89}/\mathrm{Sr}^{90}$ ratio for 80 mesh particles from Station 10. Large differences are evident in the results for the pan fraction from Station 12 that are reported by the three contracting laboratories. Many of these discrepancies can no doubt be resolved by further analysis of the data.

While radiochemical fractionation was not observed by the gamma decay measurements nor by the pulse height spectra, perhaps the radiochemical data will provide a more sensitive test. R-values as discussed in Reference 8 are useful indices of fractionation. The R-value is defined as the ratio of the number of atoms of a radionuclide to the number of atoms of a reference radionuclide in a debris sample divided by the same ratio for thermal neutron fission of U^{235} . Enrichment or depletion are manifested by positive or negative deviations from the characteristic value.

Sample Number	Activity at 100 hr	Empty Collector Activity at 100 hr	Weight Recovered	Activity Concentration	Mass Concentration	Specific Activity	
	c/m	c/m	grams	c/m/sq ft	grams/sq ft	c/m/gram	1
6 SE SE	9565100. 2001/1020	51000.	4226.7 2251, 2	2391275.	1056.7 813 6	. 2263 1072	
3 S 5 O	5191032		2543.9	1297758.	636.0	2040	
10 SE	1646234.	.86111	1256.5	411559.	314.1	OTET.	
11 SE	1864910.	20491.	628.0	466228.	157.0	5963	
12 SE	I	8	476.6	1	118.9		
13 SE	664817.	9305.	286.3	166204.	71.6	.2321	
14 SE	1	1	14. 8	1	11.2		
15 SE	346266.	0.	55.3	86567.	13.8	6272	
16 SE	1356415.	26672.	229.0	339104 ·	57.2	5928	
17 SE	633211.	•	120.0	158303.	30.0	5276	
10 SE	966452.	21611.	396.8	241636.	99.2	2435	
19 SE	1437012.	4556.	495.0	371753.	123.8	3002	
20 SE	755423.	4057.	363.2	188856.	90. 8	2079	

TABLE 3.2 GAMMA ACTIVITY AND GROSS MASS OF DEBRIS COLLECTED

	Debris in Samples	0.53 Mev Photons/sec at Zero Time in AgI Precipitate Measured on 8 July at 2100 hr
	grams	
Covered sample Uncovered sample	0.1 95.8	95 283

TABLE 3.5 GASEOUS IODINE MEASURED FROM SHOT TIME UNTIL D+1

.

Sample	Duration of Air Exposure	<u>4-pi Activ</u> Total	ity at 11 Days Iodine	Observed Iodine/ Total	Observed <u>I x 100</u> Expected I*
		me.	ma.		
1 2 3 4 5 6 7 8 9 10	1 2 3 4 5 6 7 8 9 10	180×10^{-9} 185×10^{-9} 195×10^{-9} 170×10^{-9} 170×10^{-9} 165×10^{-9} 165×10^{-9} 160×10^{-9} 160×10^{-9} 165×10^{-9}	- 15.6 x 10-9 13.0 x 10-9 13.2 x 10-9 11.5 x 10-9 10.5 x 10-9 8.0 x 10-9 6.4 x 10-9 -	0.0800 0.07 <i>6</i> 4 0.0776 0.0697 0.0636 0.0500 0.0900	33.3 30.5 31.1 27.9 25.4 20.0 16.0
* Referen	nce 5 at 11	days Fiss	I(ma) sion Product (ma	= 0.25	expected

TABLE 3.6 LOSS OF IODINE FROM PARTICULATE DEBRIS BY AIR EXPOSURE

Sample	Measured on 9 July 1962 Total Sample 25 ml Solution		% Leached
	max 10 ¹¹	max 10 ¹¹	
рН 1.0			
42 mesh 150 " 325 " Pan "	7,360 6,010 8,048 15,190	340 440 678 2,420	4.61 7.32 8.42 15.93
pH 4.0 42 mesh 150 " 325 " Pan "	27,120 5,562 8,420 16,820	390 502 1,060 2,860	1.44 9.02 12.58 17.0
pH 6.0 42 mesh 150 " 325 " Pan "	24,0 <i>6</i> 4 5,509 7,604 15,800	302 547 942 2,542	1.25 9.93 12.39 16.3
pH 10.0 42 mesh 150 " 325 " Pan "	8,040 4, <i>6</i> 40 7,170 14,950	230 350 730 990	2.86 7.54 10.2 6.62

TABLE 3.7 THREE DAY LEACHING

Sample	Measured on 14 Total Sample	July 1962 25 ml Solution	% Leached
	max 10 ¹¹	max 10 ¹¹	
pH 1.0 42 mesh 150 mesh 325 mesh Pan mesh	4195 1855 1335 3670	135 195 125 410	3.22 10.51 9.36 11.2
pH 4.0 42 mesh 150 mesh 325 mesh Pan mesh	2805 1330 1820 3625	45 70 110 365	1.60 5.26 6.04 10.07
pH 6.0 42 mesh 150 mesh 325 mesh Pan mesh	4130 1320 1865 3660	70 60 125 350	1. <i>6</i> 4 4.54 6.70 9.56
pH 10.0 42 mesh 150 mesh 325 mesh Pan mesh	1920 1530 1895 3630	40 70 135 350	2.08 4.58 7.12 9.64

TABLE 3.8 EIGHT DAY LEACHING

	Measured on 9 Total Sample	July 1962 Adobe	% Exchange
	ma x 10 ¹¹	max 10 ¹¹	
Adobe	Total	Adobe	
42 mesh 150 mesh 325 mesh	4570 3380 5900	215 430 3050	4.70 12.72 51.69
Clay	Total	Clay	
42 mesh 150 mesh 325 mesh	5800 3300 5800	300 950 4120	5.17 28.79 71.03

TABLE 3.9 THREE DAY EXCHANGE

TABLE 3.10 NRDL SEDAN RADIOCHEMICAL RESULTS

Units: Equivalent Fissions/Gm

Station No.	Screen Retained On	Isotope	Value	Standard Deviation
	Tyler Mesh			%
10	7, 12, 24	Sr90 Sr90 Y91 Zr ⁹⁵	$\begin{array}{c} 2.25 \times 1011 \\ 4.15 \times 1011 \\ 6.52 \times 1011 \\ 3.89 \times 1011 \end{array}$	
10	80	Sr90 Sr90 Y91 Zr ⁹⁵	1.29x10 ¹⁰ 1.35x1012 2.31x1011 3.19x10	
10	170	Sr90 Sr90 Y91 Zr95	5.26×10^{11} 8.88×10^{11} 6.72×10^{11} 7.00×10^{11}	
10	325	Sr90 Sr90 Y91 Zr95	1.05x10 ¹² 1.64x1012 9.21x1011 5.49x10 ¹¹	
10	Pan	Sr90 Sr90 Y91 Zr95	2.27x1011 4.25x1011 3.70x1011 4.99x10	
12	7, 12, 24	sr90 Sr90 Y91 Zr ⁹⁵	4.51x1012 <4.83x1012 1.19x1012 1.41x10	

(Continued)

Station No.	Screen Retained On	Isotope	Value	Standard Deviation
	Tyler Mesh			<i>%</i>
12	80	89 Sr90 Y91 Zr95 Mo103 Ru106	1.90x1011 3.32x1011 7.27x1011 4.95x1011 5.06x101	+ 3.7 + 3.0 + 2.3
		Ru131 131 Te131 Te122	3.97×10 ¹¹	<u>+</u> 5.5
		Te136	2.08×10^{11}	<u>+</u> 7.2
		Cs137 Cs140 Ba141 Ce144 Ce185 W	2.02x1011 4.24x1011 4.24x1012 1.50x1012 1.37x1012 1.44x10	<u>+</u> 11.0 <u>+</u> 3.4
12	170	Sr90 Sr90 Y91 Zr ⁹⁵	4.23x1011 5.60x1011 4.00x1011 5.70x1011	
12	325	Sr90 Sr90 Y91 Zr ⁹⁵	1.15x1012 1.64x1011 5.68x1011 5.16x1011	
12	Pan	sr ⁸⁹ sr ⁹⁰	$\begin{array}{c} 6.34 \times 10^{11} \\ 1.92 \times 10^{12} \\ 1.08 \times 10^{12} \\ 5.17 \times 10^{11} \\ 1.93 \times 10^{11} \\ 1.48 \times 10^{12} \end{array}$	<u>+</u> 5.0
v				-

Units: Equivalent Fissions/Gm

*Units = Atoms

Station No.	Screen Retained On	Isotope	Value	Standard Deviation
	Tyler Mesh			<i>g</i> ,
12	Pan	y91	6.20×10^{11} 7.77 × 1011	
		2r ⁹⁵	9.20x1011 7.29x1011 2.81x1011 1.94x10	
12	Pan	Mo ⁹⁹	1.55x10 ¹¹	
		Ru ¹⁰³	2.43x1011 3.84x10	<u>+</u> 2.9
			-	
12	Pan	Ru ¹⁰⁶	5.55x10 ¹¹	
		1 ¹³¹	-	
			5.85x10 ¹¹	<u>+</u> 4.1
12	Pan	Te ¹³¹	-	
		Te ¹³²	4.51x10 ¹¹	
			7.42x10 ¹⁰	<u>+</u> 7.3
12	Pan	Cs ¹³⁶	1.50x10 ¹¹	
		Cs ¹³⁷	5.25x10 ¹¹ 5.99x10 ¹¹	
			9.99x10 ¹¹	<u>+</u> 2.2

Units: Equivalent Fissions/Gm

(Continued)

、...

.

Units: Equivalent Fissions/Gm

Station No.	Screen Retained On	Isotope	Value	Standard Deviation
	Tyler Mesh			<i>q</i> ₀
12	Pan	Ba ¹⁴⁰	5.78x10 ¹¹	
		Ce ¹⁴¹	7.75x10 ¹¹ 9.06x10 ¹¹	
			2.96x10 ¹¹	<u>+</u> 14.3
12	Pan	Ce^{144}	2.43x10 ¹¹	
		w ¹⁸⁵	2.32x10 ¹¹	<u>+</u> 2.7
			2.19x10 ¹² *	<u>+</u> 12.0
13	7	89 Sr90 91 2r ⁹⁵	6.29x1011 9.85x1012 2.07x1012 4.47x10	
13	12	sr90 Sr90 y91 Zr95	1.85x1011 3.48x1012 5.88x1011 4.32x10	
13	24	sr90 Sr90 y91 Zr ⁹⁵	4.45x1011 6.23x1011 8.81x1012 4.99x10	
13	80	sr ⁸⁹ sr90 y91 zr ⁹⁵	4.19x1011 6.37x1012 1.39x1012 1.94x10	
* Units =	Atoms		-	

(Continued)

Units: Equivalent Fissions/Gm

Station No.	Screen Retained On	Isotope	Value	Standard Deviation
·	Tyler Mesh			%
13	170	sr90 Sr90 91 2r Zr	5.05x1011 4.83x1011 3.93x1011 4.87x1011 4.87x10	
13	325	89 Sr90 Sr91 Y91 Zr ⁹⁵	1.22x10 ¹² 9.66x1011 6.22x1011 5.46x1011	
13	Pan	sr99 Sr90 y91 Zr ⁹⁵	2.60x10 ¹² 2.32x1012 7.82x1011 3.16x1011	
14	7, 12	Sr90 Sr90 Y91 Zr ⁹⁵	2.60x1011 5.21x1011 7.47x1011 1.11x10	
14	24	89 Sr90 Sr91 Zr95 Mo103	2.11x1011 4.02x1011 1.53x1012 1.06x1012 1.17x10	+ 3.3 + 4.0
		Ru-00 Ru-106 Ru-131 131	2.13x10 ¹¹ 4.88x10 ¹¹	<u>+</u> 7.3 <u>+</u> 8.3
		Te 132 Te 136 Cs 136 Cs 137 Cs 140 Ba 141 Ce 144	3.51x1012 1.07x1012 2.57x1011 7.59x1011 < 8.63x1012	+ 9.5 + 7.1 + 3.7 + 4.3
* Units =	Atoms	Ce ¹⁴⁴ W ¹⁸⁵	1.24x10 ¹² 3.28x10 ¹² *	<u>+</u> 4.6

Station Screen Isotope Value Standard Retained On No. Deviation Tyler Mesh 96 2.61x10¹¹ 4.66x10¹¹ 1.78x10¹² 80 14 + 2.5 + 2.5 + 6.5 1.24×10^{12} 1.27×10^{12} Ru 106 1.70x10¹¹ Ru II31 Te131 Te132 Te136 Cs137 Cs137 + 16.0 3.91x1012 1.19x1012 3.42x1011 8.92x1012 1.10x1012 1.44x1012 3.62x10* <u>+</u> 5.1 <u>+</u> 19.0 Cs_140 Ba_141 Ce141 Ce144 Ce185 W + 10.7 sr⁸⁹ 5.63x1011 9.75x1012 1.04x1012 1.65x10 14 170 Sr90 Y91 Zr⁹⁵ Sr⁸⁹ Sr90 Y91 Zr⁹⁵ 8.27x1011 9.37x1011 9.06x1011 8.43x10 14 325 sr⁸⁹ sr90 y91 $1.17 \times 10^{12} \\ 1.35 \times 10^{12} \\ 1.35 \times 10^{12} \\ 1.17 \times 10^{12} \\ 3.19 \times 10^{11} \\ 4.62 \times 10^{12} \\ 10$ + 2.6 + 7.3 14 Pan 95 + 9.8 + 3.9 103 Ru 106 1.09x10¹²

Units: Equivalent Fission/Gm

***Units** = Atoms

TABLE (3.10 ((CONTINUED)) NRDL	SEDAN	RADIOCHEMICAL	RESULTS

Units: Equivalent Fissions/Gm

Station No.	Screen Retained On	Isotope	Value	Standard Deviation	
<u></u>	Tyler Mesh			%	
14	Pan	Te131 Te132 Cs136 Cs137 Cs140 Be141 Ce144 Ce144 W	$\begin{array}{c} 8.12 \times 10^{11} \\ 5.85 \times 10^{12} \\ 1.16 \times 10^{12} \\ 8.79 \times 10^{11} \\ 8.79 \times 10^{11} \\ 4.94 \times 10^{11} \\ 3.64 \times 10^{12} \end{array}$	+ 4.2 + 14.8 + 2.9 + 2.6	
19	7	89 Sr90 Sr91 Zr99 Mo103 Ru106 Ru131 Te132 Te136 Cs137 Cs140 Be141 Ce144 Ce144 S	$ \begin{array}{c} - \\ 1.66x1012 \\ 1.23x1012 \\ 1.15x10 \\ 1.15x10 \\ 1.54x1012 \\ 1.62x1012 \\ 1.69x1011 \\ 2.38x1011 \\ 8.36x1012 \\ 1.21x1012 \\ 1.32x1012 \\ 2.88x1012 \\ \end{array} $	$\begin{array}{r} + & 5.0 \\ + & 6.2 \\ + & 7.7 \\ + & 26.0 \\ + & 4.7 \end{array}$	
19	12	sr90 Sr90 Y91 Zr ⁹⁵	$7.77 \times 10^{10} \\ 2.41 \times 10^{11} \\ 2.76 \times 10^{11} \\ 3.48 \times 10^{11} \\ 3.48$		
19	24	Sr ⁸⁹ Sr90 Y91 Zr ⁹⁵	2.02x1011 3.19x1011 6.32x1012 1.07x10		
*Units = Atoms					

Ilnite.	Equivelent	Fissions	/Gm
0111.02.	Edutateur	LT22TOU2	

Station No.	Screen Retained On	Isotope	Values	Standard Deviation
	Tyler Mesh			%
19	80	Sr90 Sr90 Y91 Zr95 Mo103	1.15x1011 2.11x1011 6.63x1011 4.69x1011 4.81x10	+ 3.3 + 4.5 + 3.5
		Ru106 Ru131 131	2.91x1011 3.27x10	<u>+</u> 4.2 <u>+</u> 21.0
		Te132 Te136 Cs137 Cs137	2.23×10^{11} 5.28×10^{11} 1.48×10^{11}	$\frac{+}{+}$ 2.6 $\frac{+}{+}$ 8.1
		Ba140 Ce141 Ce144 Ce185 W	3.43x1011 2.95x1011 5.20x1012 1.54x10 ¹² *	+ 2.4 + 4.7 + 5.6 + 4.2
19	170	sr90 sr90 y91 Zr ⁹⁵	2.32x1011 3.81x1011 3.10x1011 4.00x10	
19	325	sr ⁸⁹ sr90 y91 zr ⁹⁵	4.18x1011 5.60x1011 5.19x1011 5.31x10	
19	Pan	sr ⁸⁹ sr ⁹⁰ y ⁹¹ zr ⁹⁵	$1.25 \times 10^{12} \\ 6.92 \times 10^{12} \\ 1.64 \times 10^{12} \\ 1.09 \times 10^{12} \\ 1.09 \times 10^{11} \\ 8.42 \times 10^{12} \\ 1.02 \times 10^{11} \\ 4.99 \times 10^{11} \\ 2.96 \times 10^{11} \\ 1.06 \times 10^{11} \\ 1.06$	<u>+</u> 2.5
*Units =	Atoms		J.UOALO	<u>·</u>)·)

(Continued)

Units:	Equivalent	Fissions/Gm

Station No.	Screen Retained On	Isotope	Value	Standard Deviation
	Tyler Mesh			%
19	Pan	99 Ru103 Ru106 Ru131 I131	3.74x10 ¹¹ 9.48x10 ¹¹ 7.64x10	+ 5.2 + 3.3 + 6.6
		Te136 Cs137 Cs137 Ba140 Ba141 Ce144 Ce144 Ce185	7.78×10^{11} 4.97×10^{11} 7.25×10^{11} 7.62×10^{11} 4.27×10^{11} 3.50×10^{12}	$\begin{array}{r} + & 6.3 \\ + & 5.7 \\ + & 5.4 \\ + & 6.0 \\ + & 4.2 \\ + & 2.0 \end{array}$
20	7, 12, 24	sr90 sr90 y91 y95 Zr ⁹⁵	1.82x1011 2.80x1011 6.17x1012 1.17x10	<u> </u>
20	80	sr ⁸⁹ Sr90 Y91 Zr ⁹⁵	1.79x1011 3.38x1011 3.72x1011 5.66x1011	
20	170	sr ⁸⁹ sr90 y91 zr ⁹⁵	2.04x10 ¹¹ 2.83x1011 2.56x1011 3.48x10 ¹¹	
20	325	sr90 sr90 Y91 Zr ⁹⁵	3.18x1011 4.78x1011 4.75x1011 4.29x10	
20	Pan	89 Sr90 Sr91 Y91 Zr ⁹⁵	1.07x1011 1.54x1011 3.85x1011 3.58x10	
*Units =	Atoms			

Figure 3.1 Coincidence correction for gamma scintillation counter.

Figure 3.2 Standard decay curve for scintillation counter and Station 7 decay.

Figure 3.3 Standard 4-pi ionization chamber decay curve and computed decay curve.

Figure 3.4 Loss of iodine from particulate debris by air exposure.

Figure 3.7 Pulse neight distribution of activity from different locations.

Figure 3.8 Pulse height distributions of activity from different locations.

Figure 3.9 Pulse height distributions of activity from different locations.

Figure 3.10 Pulse height distributions of sieved fractions.

Figure 3.11 Pulse height distributions of sieved fractions.

Figure 3.12 Pulse height distributions of sieved fractions.

82

CHAPTER 4

CONCLUSIONS

1. Sufficient data were obtained to satisfy the objectives of Project 62.90.

2. Gamma decay measurements showed no evidence of radionuclide fractionation in debris from different locations, nor among different particle size fractions. Decay measurements showed excellent agreement with a computed decay rate.

3. Measurements of mass and activity distributions indicate that the radionuclides are associated with the volume of the particles rather than with their surface area. However the wet sieving technique may nave partially removed surface activity.

4. Specific activity of the debris generally increased with increasing distance downwind from ground zero which seems to indicate a relationship between specific activity and surface area.

5. Airborne iodine fission products were found in the contaminated field downwind from ground zero.

6. It was found that iodine fission products volatilize and are released from particulate fallout.

7. Pulse height distribution were similar for debris from different locations, and different sized fractions, again indicating no significant fractionation of gamma emitting radionuclides.

REFERENCES

1. P. D. LaRiviere; "Response of a Low-Geometry Scintillation Counter to Fission and Other Products"; USNRDL-TR-303, February 1959; U. S. Naval Radiological Defense Laboratory, San Francisco, California.

2. C. F. Miller; "Response Curves for USNRDL 4-pi Ionization Chamber"; USNRDL-TR-155, May 1957; U. S. Naval Radiological Defense Laboratory, San Francisco, California.

3. C. S. Cook and others; "Neutron Induced Activities in Soil Elements", Project 2.2, Operation Plumbbob, WT-1411, July 1959; U. S. Naval Radiological Defense Laboratory.

4. W. B. Lane, J. D. Sartor; "Stoneman II Test of Reclamation Performance, Vol. 1. The Production, Dispersal and Measurement of Synthetic Fallout Material", USNRDL-TR-334, 6 June 1960; U. S. Naval Radiological Defense Laboratory, San Francisco, California.

5. C. F. Miller and P. Loeb; "Ionization Rates and Photon Pulse Decay of Fission Products From the Slow-Neutron Fission of U²³⁵"; USNRDL-TR-247, 4 August 1958; U. S. Naval Radiological Defense Laboratory, San Francisco, California.

6. R. C. Bolles and N. E. Ballou; "Calculated
Activities and Abundances of U²³⁵ Fission Products";
USNRDL-TR-456, 30 August 1956; U. S. Naval Radiological
Defense Laboratory, San Francisco, California.

7. L. Wish and E. C. Freiling; "Quantitative Radiochemical Carrier Free Procedures"; USNRDL-TR-464, 8 July 1960; U. S. Naval Radiological Defense Laboratory, San Francisco, California.

8. E. C. Freiling; "Fractionation I, High Yield
Surface Burst Correlations"; USNRDL-TR-385, October 1959;
U. S. Naval Radiological Defense Laboratory, San
Francisco, California.